Highly Cited and Recent Papers on UVB and/or Vitamin D and Cancer
(826 Papers)

William B. Grant, Ph.D.
Sunlight, Nutrition, and Health Research Center (SUNARC)
P.O. Box 641603
San Francisco, CA 94164, USA
www.sunarc.org, wbgrant@infionline.net

Note: Abstracts are generally available through www.pubmed.gov. Also, an estimate of the number of citations can be obtained through Google Scholar: http://scholar.google.com/ using the search terms such as: “author:A author:Einstein.” The number of citations from Google Scholar (GS) will be somewhat different from those for the Institute of Scientific Information (ISI) (http://www.isinet.com/) since ISI looks at citations only from journal articles while GS includes a few from other sources. Unfortunately, ISI is only available through subscription, such as at a library or institution. (The number of citations were updated on Sept. 10, 2008 for the more highly cited papers dating back to 2002 and Nov, 2007 dating back to 1998.)

From http://sciencewatch.com/about/met/thres-highlyctd/, it appears as if I’m using a criterion of 1/3 the threshold for the top 1% of cited papers per year for clinical medicine in the 1990s. Therefore, this fraction should also be applied thereafter. The thresholds for the top 1 percentile through June 30, 2008 (posted September 1) from that URL are:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>190</td>
<td>183</td>
<td>176</td>
<td>165</td>
<td>156</td>
<td>139</td>
<td>126</td>
<td>107</td>
<td>84</td>
<td>62</td>
<td>36</td>
<td>14</td>
<td>3</td>
</tr>
</tbody>
</table>

I consider 1/3 of these values to be the threshold for highly cited papers on vitamin D and cancer.

112 papers (17 epub) (at this rate, 139 in year)

Fleet JC. Molecular actions of vitamin D contributing to cancer prevention. Mol Aspects Med. 2008 Aug 8. [Epub ahead of print]

Grant WB. Hypothesis-Ultraviolet-B irradiance and vitamin D reduce the risk of viral infections and thus their sequelae, including autoimmune diseases and some cancers. Photochem Photobiol. 2008;84:356-65. (3 ISI)

Grant WB. Re: Prospective Study of Vitamin D and Cancer Mortality in the United States. JNCI June 4 2008;100:826.

Grant WB. Differences in vitamin D status may explain black-white differences in breast cancer survival rates. J Natl Med Assoc. 2008 Sept;100(9):1040.

Moan J, Porojnicu AC, Dahlback A, Setlow RB. Addressing the health benefits and risks, involving vitamin D or skin cancer, of increased sun exposure. Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):668-73. (7 ISI)

(176 papers (28>2)

Ding EL, Mehta S, Fawzi WW, Giovannucci EL. Interaction of estrogen therapy with calcium and vitamin D supplementation on colorectal cancer risk: Reanalysis of Women's Health Initiative randomized trial. Int J Cancer. 2007 Dec 18;122(8):1690-1694.

Froicu M, Cantorna MT. Vitamin D and the vitamin D receptor are critical for control of the innate immune response to colonic injury. BMC Immunol. 2007 Mar;30;8:5.

Giovannucci E. Epidemiological evidence for vitamin D and colorectal cancer. J Bone Miner Res. 2007 Dec;22 Suppl 2:V81-5.

Grant WB. An ecologic study of cancer mortality rates in Spain with respect to indices of solar UV irradiance and smoking. Int J Cancer. 2007;120:1123-7. (6 ISI, 7 GS)

Note: I have a correction to this paper that I would be happy to supply. I should have done a multiple regression analysis. 15 cancers show evidence of a UVB effect, not 17 reported.

Grant WB. A meta-analysis of second cancers after a diagnosis of nonmelanoma skin cancer: additional evidence that solar ultraviolet-B irradiance reduces the risk of internal cancers. J Steroid Biochem Mol 2007;103(3-5):668-674. (3 ISI)

Grant WB, Garland CF, Gorham ED. An estimate of cancer mortality rate reductions in Europe and the U.S. with 1000 I.U. of oral vitamin D per day. Rec Results Cancer Res. 2007;174:225-34.

Hutchinson PE, Osborne JE. Do we need a revised public health policy on sun exposure? British Journal of Dermatology. 2007;156 (4), 786–788.

Kutuzova GD, Deluca HF. 1,25-Dihydroxyvitamin D(3) regulates genes responsible for detoxification in intestine. Toxicol Appl Pharmacol. 2007 Jan 1;218(1):37-44. (2 ISI)

Lin J, JoAnn E. Manson; I-Min Lee; Nancy R. Cook; Julie E. Buring; Shumin M. Zhang. Intakes of Calcium and Vitamin D and Breast Cancer Risk in Women. Arch Intern Med. 2007;167:1050-1059. (18 ISI)

Park SY, Murphy SP, Wilkens LR, Nomura AM, Henderson BE, Kolonel LN. Calcium and Vitamin D Intake and Risk of Colorectal Cancer: The Multiethnic Cohort Study. Am J Epidemiol. 2007 165: 784-93. (10 ISI)

Porojnicu A, Robsahm TE, Berg JP, Moan J. Season of diagnosis is a predictor of cancer survival. Sun-induced vitamin D may be involved: A possible role of sun-induced Vitamin D. J Steroid Biochem Mol 2007;103(3-5): 675-678. (8 ISI)

Robien K, Cutler GJ, Lazovich D. Vitamin D intake and breast cancer risk in postmenopausal women: the Iowa Women's Health Study. Cancer Causes Control. 2007 Sep;18(7):775-82. (1 ISI)

Rukin NJ, Strange RC. What are the frequency, distribution, and functional effects of vitamin D receptor polymorphisms as related to cancer risk? Nutr Rev. 2007 Aug;65(8 Pt 2):S96-101. (3 ISI)

Schwartz GG. The ‘Cocaine Blues’ and Other Problems in Epidemiologic Studies of Vitamin D and Cancer. Nutr Cancer. 2007;65(8):S75-S76.

Sinclair C. Vitamin D--an emerging issue in skin cancer control. Implications for public health practice based on the Australian experience. Recent Results Cancer Res. 2007;174:197-204. Review.

Tezal M, DDS, PhD; Maureen A. Sullivan, DDS; Mary E. Reid, PhD; James R. Marshall, PhD; Andrew Hyland, PhD; Thom Loree, MD; Cheryl Lillis, BS; Linda Hauck, BA; Jean Wactawski-Wende, PhD; Frank A. Scannapieco, DMD, PhD. Chronic Periodontitis and the Risk of Tongue Cancer. Arch Otolaryngol Head Neck Surg. 2007;133:450-454.

(111 papers, 45≥5)

Grant WB. Lower vitamin-D production from solar ultraviolet-B irradiance may explain some differences in cancer survival rates. J Natl Med Assoc. 2006 Mar;98(3):357-64. (9 ISI, 4 GS)

Grimes DS. Are statins analogues of vitamin D? Lancet. 2006 Jul 1;368(9529):83-6. (9 ISI)

Holick MF. Calcium plus vitamin D and the risk of colorectal cancer. N Engl J Med. 2006 May 25;354(21):2287-8; author reply 2287-8. (3 ISI)

Holick MF. Vitamin D: its role in cancer prevention and treatment. Prog Biophys Mol Biol. 2006 Sep;92(1):49-59. 27 ISI)

Lips P. Vitamin D physiology. Prog Biophys Mol Biol. 2006 Sep;92(1):4-8. (17 GS)

Norman AW. Minireview: vitamin D receptor: new assignments for an already busy receptor. Endocrinology. 2006 Dec;147(12):5542-8. (10 ISI)

Reichrath J. The challenge resulting from positive and negative effects of sunlight: how much solar UV exposure is appropriate to balance risks of vitamin D deficiency and skin cancer? Prog Biophys Mol Biol. 2006 Sep;92(1):9-16. (12 ISI, 7 GS)

Schwartz GG, Hanchette CL. UV, latitude, and spatial trends in prostate cancer mortality: All sunlight is not the same (United States). Cancer Causes Control. 2006 Oct;17(8):1091-101. (6 ISI)

Tokar EJ, Ancrile BB, Ablin RJ, Webber MM. Cholecalciferol (vitamin D3) and the retinoid N-(4-hydroxyphenyl)retinamide (4-HPR) are synergistic for chemoprevention of prostate cancer. J Exp Ther Oncol. 2006;5(4):323-33.

Trump DL, Potter DM, Muindi J, Brufsky A, Johnson CS. Phase II trial of high-dose, intermittent calcitriol (1,25 dihydoxyvitamin D3) and dexamethasone in androgen-independent prostate cancer. Cancer. 2006 May 15;106(10):2136-42. (11 ISI)

Zhang X, Nicosia SV, Bai W. Vitamin D receptor is a novel drug target for ovarian cancer treatment. Curr Cancer Drug Targets. 2006 May;6(3):229-44.

(6+ citat) (73 papers, 31≥13)

Moon SJ, Fryer AA, Strange RC. Ultraviolet radiation: effects on risks of prostate cancer and other internal cancers. Mutat Res. 2005 Apr 1;571(1-2):207-19. (8 ISI, 12 GS)

Mulholland DJ, Dedhar S, Coetzee GA, Nelson CC. Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Wnt you like to know? Endocr Rev. 2005 Dec;26(7):898-915. (22 ISI)

Murthy S, Agoulnik IU, Weigel NL. Androgen receptor signaling and vitamin D receptor action in prostate cancer cells. Prostate. 2005 Sep 1;64(4):362-72.

Ordonez-Moran P, LarriBe MJ, Pendas-Franco N, AguilerA O, Gonzalez-Sancho JM, Munoz A. Vitamin D and cancer: an update of in vitro and in vivo data. Front Biosci. 2005 Sep 1;10:2723-49. (17 ISI)

(11+ citat) (64 papers, 38>20)

Bao BY, Hu YC, Ting HJ, Lee YF. Androgen signaling is required for the vitamin D-mediated growth inhibition in human prostate cancer cells. Oncogene. 2004 Apr 22;23(19):3350-60. (22 ISI)

Huang YC, Chen JY, Hung WC. Vitamin D3 receptor/Sp1 complex is required for the induction of p27Kip1 expression by vitamin D3. Oncogene. 2004 Jun 17;23(28):4856-61. (15 ISI)

Zinser GM, Welsh J. Vitamin D receptor status alters mammary gland morphology and tumorigenesis in MMTV-neu mice. Carcinogenesis. 2004 Dec;25(12):2361-72. (22 ISI)

(12+ citat) (45 papers, 23 >28)

Chen TC, Holick MF. Vitamin D and prostate cancer prevention and treatment. Trends Endocrinol Metab. 2003 Nov;14(9):423-30. Review. (38 ISI, 39 GS)

Grant WB. Ecologic studies of solar UV-B radiation and cancer mortality rates. Recent Results Cancer Res. 2003;164:371-7. (44 ISI, 56 GS)

Yang ES, Burnstein KL. Vitamin D inhibits G1 to S progression in LNCaP prostate cancer cells through p27(Kip1) stabilization and Cdk2 mislocalization to the cytoplasm. J Biol Chem. 2003 Nov 21;278(47):46862-8. (28 ISI)

Zittermann A. Vitamin D in preventive medicine: are we ignoring the evidence? Br J Nutr. 2003 May;89(5):552-72. (185 ISI, 145 GS)
Bernardi RJ, Johnson CS, Modzelewski RA, Trump DL. Antiproliferative effects of 1alpha,25-dihydroxyvitamin D(3) and vitamin D analogs on tumor-derived endothelial cells. Endocrinology. 2002 Jul;143(7):2508-14. (33 ISI)

Grant WB. An ecologic study of dietary and solar ultraviolet-B links to breast carcinoma mortality rates. Cancer. 2002 Jan 1;94(1):272-81. (59 ISI, 103 GS)

(28+ citat) (35 papers, 23>40)

Diaz GD, Paraskeva C, Thomas MG, Binderup L, Hague A. Apoptosis is induced by the active metabolite of vitamin D3 and its analogue EB1089 in colorectal adenoma and carcinoma cells: possible implications for prevention and therapy. Cancer Res. 2000 Apr 15;60(8):2304-12. (57 ISI)

(39+ citat) (19 papers, 14>46)

Blutt SE, McDonnell TJ, Polek TC, Weigel NL. Calcitriol-induced apoptosis in LNCaP cells is blocked by overexpression of Bcl-2. Endocrinology. 2000 Jan;141(1):10-7. (79 ISI)

(47+ citat) (27 papers, 22>50)

James SY, Williams MA, Newland AC, Colston KW. Leukemia cell differentiation: cellular and molecular interactions of retinoids and vitamin D. Gen Pharmacol. 1999 Jan;32(1):143-54. (56 GS)

Mathiasen IS, Lademann U, Jaattela M. Apoptosis induced by vitamin D compounds in breast cancer cells is inhibited by Bcl-2 but does not involve known caspases or p53. Cancer Res. 1999 Oct 1;59(19):4848-56. (95 GS)

(53+ citat) (17 papers, 13>54)

(53+ citat) (13 papers; 10 >57)

White E, Shannon JS, Patterson RE. Relationship between vitamin and calcium supplement use and colon cancer. Cancer Epidemiol Biomarkers Prev. 1997 Oct;6(10):769-74. (84 ISI)

Hedlund TE, Moffatt KA, Miller GJ. Stable expression of the nuclear vitamin D receptor in the human prostatic carcinoma cell line JCA-1: evidence that the antiproliferative effects of 1 alpha, 25-dihydroxyvitamin D3 are mediated exclusively through the genomic signaling pathway. Endocrinology. 1996 May;137(5):1554-61. (73 ISI)

Kane KF, Langman MJ, Williams GR. Antiproliferative responses to two human colon cancer cell lines to vitamin D3 are differently modified by 9-cis-retinoic acid. Cancer Res. 1996 Feb 1;56(3):623-32. (55 ISI)

(60+ citat) (8 papers >60)

Braun MM, Helzlsouer KJ, Hollis BW, Comstock GW. Prostate cancer and prediagnostic levels of serum vitamin D metabolites (Maryland, United States) Cancer Causes Control. 1995 May;6(3):235-9. (78 ISI, 82 GS)

Koli K, Keski-Oja J. 1,25-Dihydroxyvitamin D3 enhances the expression of transforming growth factor beta 1 and its latent form binding protein in cultured breast carcinoma cells. Cancer Res. 1995 Apr 1;55(7):1540-6. (64 ISI)

Studzinski GP, Moore DC. Sunlight—can it prevent as well as cause cancer? Cancer Res. 1995 Sep 15;55(18):4014-22. Review. (61 ISI)

Wiseman H. Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett. 1993 Jul 12;326(1-3):285-8. (44 ISI)

Newmark HL, Lipkin M. Calcium, vitamin D, and colon cancer. Cancer Res. 1992 Apr 1;52(7 Suppl):2067s-2070s. (82 ISI)

Schwartz GG. Multiple sclerosis and prostate cancer: what do their similar geographies suggest? Neuroepidemiology. 1992;11(4-6):244-54. (19 GS)

Abe J, Moriya Y, Saito M, Sugawara Y, Suda T, Nishii Y. Modulation of cell growth, differentiation, and production of

Stumpf WE, Sar M, Reid FA, Tanaka Y, DeLuca HF. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science 1979;20:1188–90. (391 ISI)
